바로가기 메뉴
본문 바로가기
푸터 바로가기

Inhibition of Ca2+-permeable TRPV3 and inflammatory cytokine release by honokiol and magnolol in human epidermal keratinocytes

저자

Thi HD, Kim JY, Kim HJ, Kim WK, Kim SJ, Nam JH

저널 정보

Biochemical and Biophysical Research Communications

출간연도

Jan 2024

Transient receptor potential vanilloid-3 (TRPV3) ion channels are prominently expressed in keratinocytes, playing a vital role in skin functions. Honokiol and magnolol (H&M) the primary bioactive constituents in Magnolia officinalis extract, demonstrate anti-inflammatory and skin-protective properties. Nevertheless, the underlying mechanism regarding their effect on Ca2+-permeable ion channels remain unclear. Our purpose in this study is to investigate the effect of H&M on TRPV3 and cytokine release in normal human epidermal keratinocytes (NHEKs), including its gain-of-function (GOF) mutants (G573S and G573C) associated with Olmstead syndrome. We performed whole-cell patch-clamp, fura-2 spectrofluorimetry to investigate channels activity, CCK-8 assay to analyze cell death and enzyme-linked immunosorbent assay to assess the cytokine release from NHEKs. H&M inhibited the TRPV3 current (ITRPV3) and cytosolic calcium increase in NHEKs, HEK293T cells overexpressing hTRPV3 and its GOF mutants. Moreover, the release of pro-inflammatory cytokines (interleukin-6 and -8) from keratinocytes stimulated by TRPV3 agonist was effectively suppressed by H&M. Our findings provide insights into the mechanism underlying the anti-inflammatory effects of H&M, highlighting their potential in treating skin diseases.