바로가기 메뉴
본문 바로가기
푸터 바로가기
TOP

Suppression of CFTR-mediated Cl secretion of airway epithelium in vitamin C-deficient mice

저자

Kim Y, Kim H, Yoo HY, Kang JS, Kim SJ, Kim JK, Cho HS

저널 정보

Journal of Korean Medical Science

출간연도

Mar 2011

Hyperoxic ventilation induces detrimental effects on the respiratory system, and ambient oxygen may be harmful unless compensated by physiological anti-oxidants, such as vitamin C. Here we investigate the changes in electrolyte transport of airway epithelium in mice exposed to normobaric hyperoxia and in gulonolacton oxidase knock-out (gulo[-/-]) mice without vitamin C (Vit-C) supplementation. Short-circuit current (Isc) of tracheal epithelium was measured using Ussing chamber technique. After confirming amiloridesensitive Na+ absorption (ΔIsc,amil), cAMP-dependent Cl- secretion (ΔIsc,forsk) was induced by forskolin. To evaluate Ca2+-dependent Cl- secretion, ATP was applied to the luminal side (ΔIsc,ATP). In mice exposed to 98% PO2 for 36 hr, ΔIsc,forsk decreased, ΔIsc,amil and ΔIsc,ATP was not affected. In gulo(-/-) mice, both ΔIsc,forsk and ΔIsc,ATP decreased from three weeks after Vit-C deprivation, while both were unchanged with Vit-C supplementation. At the fourth week, tissue resistance and all electrolyte transport activities were decreased. An immunofluorescence study showed that the expression of cystic fibrosis conductance regulator (CFTR) was decreased in gulo(-/-) mice, whereas the expression of KCNQ1 K+ channel was preserved. Taken together, the CFTR-mediated Cl- secretion of airway epithelium is susceptible to oxidative stress, which suggests that supplementation of the antioxidant might be beneficial for the maintenance of airway surface liquid.