바로가기 메뉴
본문 바로가기
푸터 바로가기
TOP

Suppression of hERG K+ current and cardiac action potential prolongation by 4-hydroxynonenal via dual mechanisms

저자

Choi SW, Choi SW, Jeon YK, Moon SH, Zhang YH, Kim SJ

저널 정보

Redox Biology

출간연도

Oct 2018

Oxidative stress under pathological conditions, such as ischemia/reperfusion and inflammation, results in the production of various reactive chemicals. Of these chemicals, 4-hydroxynonenal (4-HNE), a peroxidation product of ω6-polyunsaturated fatty acid, has garnered significant attention. However, the effect of 4-HNE on cardiac electrophysiology has not yet been reported. In the present study, we investigated the effects of 4-HNE on several cardiac ion channels, including human ether-a-go-go-related (hERG) channels, using the whole-cell patch clamp technique. Short-term exposure to 100 μM 4-HNE (4-HNE100S), which mimics local levels under oxidative stress, decreased the amplitudes of rapidly activating delayed rectifier K+ current (IKr) in guinea pig ventricular myocytes (GPVMs) and HEK293T cells overexpressing hERG (IhERG). MS analysis revealed the formation of 4-HNE-hERG adduct on specific amino acid residues, including C276, K595, H70, and H687. Long-term treatment (1–3 h) with 10 μM 4-HNE (4-HNE10L), suppressed IKr and IhERG, but not IKs and ICa,L. Action potential duration (APD) of GPVMs was prolonged by 37% and 64% by 4-HNE100S and 4-HNE10L, respectively. Western blot analysis using surface biotinylation revealed a reduction in mature membrane hERG protein after treatment with 4-HNE10L. Proteasomal degradation inhibitors, such as bortezomib, prevented the 4-HNE10L-induced decrease in mature hERG, suggesting a retrograde degradation of membrane hERG due to 4-HNE. Taken together, 4-HNE100S and 4-HNE10L suppressed IhERG via functional inhibition and downregulation of membrane expression of hERG, respectively. The exposure of 4-HNE under pathological oxidative stress may increase the risk of proarrhythmic events via APD prolongation.