바로가기 메뉴
본문 바로가기
푸터 바로가기
TOP

Temperature-dependent increase in the calcium sensitivity and acceleration of activation of ANO6 chloride channel variants

저자

Lin H, Jun I, Woo JH, Lee MG, Kim SJ, Nam JH

저널 정보

Scientific reports

출간연도

Apr 2019

Anoctamin-6 (ANO6) belongs to a family of calcium (Ca2+)-activated chloride channels (CaCCs), with three splicing variants (V1, V2, and V5) showing plasma membrane expression. Unlike other CaCCs, ANO6 requires a non-physiological intracellular free calcium concentration ([Ca2+]i > 1 μM) and several minutes for full activation under a whole-cell patch clamp. Therefore, its physiological role as an ion channel is uncertain and it is more commonly considered a Ca2+-dependent phospholipid scramblase. Here, we demonstrate that physiological temperature (37 °C) increases ANO6 Ca2+ sensitivity under a whole-cell patch clamp; V1 was activated by 1 μM [Ca2+]i, whereas V2 and V5 were activated by 300 nM [Ca2+]i. Increasing the temperature to 42°C led to activation of all ANO6 variants by 100 nM [Ca2+]i. The delay time for activation of the three variants was significantly shortened at 37 °C. Notably, the temperature-dependent Ca2+-sensitisation of ANO6 became insignificant under inside-out patch clamp, suggesting critical roles of unknown cytosolic factors. Unlike channel activity, 27 °C but not 37 °C (physiological temperature) induced the scramblase activity of ANO6 at submicromolar [Ca2+]i (300 nM), irrespective of variant type. Our results reveal a physiological ion conducting property of ANO6 at 37 °C and suggest that ANO6 channel function acts separately from its scramblase activity.